Lemma 31.5.7. Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Let $x \in \text{Supp}(\mathcal{F})$ be a point in the support of $\mathcal{F}$ which is not a specialization of another point of $\text{Supp}(\mathcal{F})$. Then $x \in \text{WeakAss}(\mathcal{F})$. In particular, any generic point of an irreducible component of $X$ is weakly associated to $\mathcal{O}_ X$.
Proof. Since $x \in \text{Supp}(\mathcal{F})$ the module $\mathcal{F}_ x$ is not zero. Hence $\text{WeakAss}(\mathcal{F}_ x) \subset \mathop{\mathrm{Spec}}(\mathcal{O}_{X, x})$ is nonempty by Algebra, Lemma 10.66.5. On the other hand, by assumption $\text{Supp}(\mathcal{F}_ x) = \{ \mathfrak m_ x\} $. Since $\text{WeakAss}(\mathcal{F}_ x) \subset \text{Supp}(\mathcal{F}_ x)$ (Algebra, Lemma 10.66.6) we see that $\mathfrak m_ x$ is weakly associated to $\mathcal{F}_ x$ and we win. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: