Lemma 100.3.3. Let $P$ be a property of morphisms of algebraic spaces as above. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks representable by algebraic spaces. Let $W$ be an algebraic space and let $W \to \mathcal{Y}$ be surjective, locally of finite presentation, and flat. Set $V = W \times _\mathcal {Y} \mathcal{X}$. Then
Proof. The implication from left to right follows from Lemma 100.3.2. Assume $V \to W$ has $P$. Let $T$ be a scheme, and let $T \to \mathcal{Y}$ be a morphism. Consider the commutative diagram
of algebraic spaces. The squares are cartesian. The bottom left morphism is a surjective, flat morphism which is locally of finite presentation, hence $\{ T \times _\mathcal {Y} V \to T\} $ is an fppf covering. Hence the fact that the right vertical arrow has property $P$ implies that the left vertical arrow has property $P$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #7041 by Joshua Ciappara on
Comment #7240 by Johan on