Lemma 8.12.3. Let $u : \mathcal{C} \to \mathcal{D}$ be a continuous functor of sites. Let $p : \mathcal{S} \to \mathcal{D}$ be a stack in groupoids over $\mathcal{D}$. Then $u^ p\mathcal{S}$ is a stack in groupoids over $\mathcal{C}$.
Proof. This follows immediately from Lemma 8.12.2 and the fact that all fibre categories are groupoids. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: