The Stacks project

74.3 Descent data for quasi-coherent sheaves

This section is the analogue of Descent, Section 35.2 for algebraic spaces. It makes sense to read that section first.

Definition 74.3.1. Let $S$ be a scheme. Let $\{ f_ i : X_ i \to X\} _{i \in I}$ be a family of morphisms of algebraic spaces over $S$ with fixed target $X$.

  1. A descent datum $(\mathcal{F}_ i, \varphi _{ij})$ for quasi-coherent sheaves with respect to the given family is given by a quasi-coherent sheaf $\mathcal{F}_ i$ on $X_ i$ for each $i \in I$, an isomorphism of quasi-coherent $\mathcal{O}_{X_ i \times _ X X_ j}$-modules $\varphi _{ij} : \text{pr}_0^*\mathcal{F}_ i \to \text{pr}_1^*\mathcal{F}_ j$ for each pair $(i, j) \in I^2$ such that for every triple of indices $(i, j, k) \in I^3$ the diagram

    \[ \xymatrix{ \text{pr}_0^*\mathcal{F}_ i \ar[rd]_{\text{pr}_{01}^*\varphi _{ij}} \ar[rr]_{\text{pr}_{02}^*\varphi _{ik}} & & \text{pr}_2^*\mathcal{F}_ k \\ & \text{pr}_1^*\mathcal{F}_ j \ar[ru]_{\text{pr}_{12}^*\varphi _{jk}} & } \]

    of $\mathcal{O}_{X_ i \times _ X X_ j \times _ X X_ k}$-modules commutes. This is called the cocycle condition.

  2. A morphism $\psi : (\mathcal{F}_ i, \varphi _{ij}) \to (\mathcal{F}'_ i, \varphi '_{ij})$ of descent data is given by a family $\psi = (\psi _ i)_{i\in I}$ of morphisms of $\mathcal{O}_{X_ i}$-modules $\psi _ i : \mathcal{F}_ i \to \mathcal{F}'_ i$ such that all the diagrams

    \[ \xymatrix{ \text{pr}_0^*\mathcal{F}_ i \ar[r]_{\varphi _{ij}} \ar[d]_{\text{pr}_0^*\psi _ i} & \text{pr}_1^*\mathcal{F}_ j \ar[d]^{\text{pr}_1^*\psi _ j} \\ \text{pr}_0^*\mathcal{F}'_ i \ar[r]^{\varphi '_{ij}} & \text{pr}_1^*\mathcal{F}'_ j \\ } \]

    commute.

Lemma 74.3.2. Let $S$ be a scheme. Let $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ and $\mathcal{V} = \{ V_ j \to V\} _{j \in J}$ be families of morphisms of algebraic spaces over $S$ with fixed targets. Let $(g, \alpha : I \to J, (g_ i)) : \mathcal{U} \to \mathcal{V}$ be a morphism of families of maps with fixed target, see Sites, Definition 7.8.1. Let $(\mathcal{F}_ j, \varphi _{jj'})$ be a descent datum for quasi-coherent sheaves with respect to the family $\{ V_ j \to V\} _{j \in J}$. Then

  1. The system

    \[ \left(g_ i^*\mathcal{F}_{\alpha (i)}, (g_ i \times g_{i'})^*\varphi _{\alpha (i)\alpha (i')}\right) \]

    is a descent datum with respect to the family $\{ U_ i \to U\} _{i \in I}$.

  2. This construction is functorial in the descent datum $(\mathcal{F}_ j, \varphi _{jj'})$.

  3. Given a second morphism $(g', \alpha ' : I \to J, (g'_ i))$ of families of maps with fixed target with $g = g'$ there exists a functorial isomorphism of descent data

    \[ (g_ i^*\mathcal{F}_{\alpha (i)}, (g_ i \times g_{i'})^*\varphi _{\alpha (i)\alpha (i')}) \cong ((g'_ i)^*\mathcal{F}_{\alpha '(i)}, (g'_ i \times g'_{i'})^*\varphi _{\alpha '(i)\alpha '(i')}). \]

Proof. Omitted. Hint: The maps $g_ i^*\mathcal{F}_{\alpha (i)} \to (g'_ i)^*\mathcal{F}_{\alpha '(i)}$ which give the isomorphism of descent data in part (3) are the pullbacks of the maps $\varphi _{\alpha (i)\alpha '(i)}$ by the morphisms $(g_ i, g'_ i) : U_ i \to V_{\alpha (i)} \times _ V V_{\alpha '(i)}$. $\square$

Let $g : U \to V$ be a morphism of algebraic spaces. The lemma above tells us that there is a well defined pullback functor between the categories of descent data relative to families of maps with target $V$ and $U$ provided there is a morphism between those families of maps which “lives over $g$”.

Definition 74.3.3. Let $S$ be a scheme. Let $\{ U_ i \to U\} _{i \in I}$ be a family of morphisms of algebraic spaces over $S$ with fixed target.

  1. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ U$-module. We call the unique descent on $\mathcal{F}$ datum with respect to the covering $\{ U \to U\} $ the trivial descent datum.

  2. The pullback of the trivial descent datum to $\{ U_ i \to U\} $ is called the canonical descent datum. Notation: $(\mathcal{F}|_{U_ i}, can)$.

  3. A descent datum $(\mathcal{F}_ i, \varphi _{ij})$ for quasi-coherent sheaves with respect to the given family is said to be effective if there exists a quasi-coherent sheaf $\mathcal{F}$ on $U$ such that $(\mathcal{F}_ i, \varphi _{ij})$ is isomorphic to $(\mathcal{F}|_{U_ i}, can)$.

Lemma 74.3.4. Let $S$ be a scheme. Let $U$ be an algebraic space over $S$. Let $\{ U_ i \to U\} $ be a Zariski covering of $U$, see Topologies on Spaces, Definition 73.3.1. Any descent datum on quasi-coherent sheaves for the family $\mathcal{U} = \{ U_ i \to U\} $ is effective. Moreover, the functor from the category of quasi-coherent $\mathcal{O}_ U$-modules to the category of descent data with respect to $\{ U_ i \to U\} $ is fully faithful.

Proof. Omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04W2. Beware of the difference between the letter 'O' and the digit '0'.