Lemma 8.4.3. Let $p : \mathcal{S} \to \mathcal{C}$ be a stack over the site $\mathcal{C}$. Let $\mathcal{S}'$ be a subcategory of $\mathcal{S}$. Assume
if $\varphi : y \to x$ is a strongly cartesian morphism of $\mathcal{S}$ and $x$ is an object of $\mathcal{S}'$, then $y$ is isomorphic to an object of $\mathcal{S}'$,
$\mathcal{S}'$ is a full subcategory of $\mathcal{S}$, and
if $\{ f_ i : U_ i \to U\} $ is a covering of $\mathcal{C}$, and $x$ an object of $\mathcal{S}$ over $U$ such that $f_ i^*x$ is isomorphic to an object of $\mathcal{S}'$ for each $i$, then $x$ is isomorphic to an object of $\mathcal{S}'$.
Then $\mathcal{S}' \to \mathcal{C}$ is a stack.
Comments (0)