Lemma 4.31.9. Let
be a commutative diagram of categories and functors. Then there is a canonical functor
of categories.
Lemma 4.31.9. Let
be a commutative diagram of categories and functors. Then there is a canonical functor
of categories.
Proof. If we write $\mathcal{A} \times _\mathcal {B} \mathcal{C} \times _\mathcal {D} \mathcal{E}$ as $(\mathcal{A} \times _\mathcal {B} \mathcal{C}) \times _\mathcal {D} \mathcal{E}$ then we can just use the functor
if you know what I mean. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: