Lemma 79.12.2. Let $S$ be a scheme. Consider a commutative diagram
\[ \xymatrix{ X' \ar[rr]_ j \ar[rd] & & X \ar[ld] \\ & Y } \]
of algebraic spaces over $S$. If $j$ is an open immersion, then there is a canonical injective map of sheaves $j : (X'/Y)_{fin} \to (X/Y)_{fin}$.
Comments (0)
There are also: