The Stacks project

Definition 59.57.2. Let $G$ be a topological group. Let $M$ be a discrete $G$-module with continuous $G$-action. In other words, $M$ is an object of the category $\text{Mod}_ G$ introduced in Definition 59.57.1.

  1. The right derived functors $H^ i(G, M)$ of $H^0(G, M)$ on the category $\text{Mod}_ G$ are called the continuous group cohomology groups of $M$.

  2. If $G$ is an abstract group endowed with the discrete topology then the $H^ i(G, M)$ are called the group cohomology groups of $M$.

  3. If $G$ is a Galois group, then the groups $H^ i(G, M)$ are called the Galois cohomology groups of $M$.

  4. If $G$ is the absolute Galois group of a field $K$, then the groups $H^ i(G, M)$ are sometimes called the Galois cohomology groups of $K$ with coefficients in $M$. In this case we sometimes write $H^ i(K, M)$ instead of $H^ i(G, M)$.


Comments (0)

There are also:

  • 2 comment(s) on Section 59.57: Group cohomology

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04JR. Beware of the difference between the letter 'O' and the digit '0'.