Lemma 59.48.4. Let $f : X \to Y$ be a closed immersion of schemes. Let $\{ U_ i \to X\} $ be a syntomic (resp. smooth, resp. étale) covering. There exists a syntomic (resp. smooth, resp. étale) covering $\{ V_ j \to Y\} $ such that for each $j$, either $V_ j \times _ Y X = \emptyset $, or the morphism $V_ j \times _ Y X \to X$ factors through $U_ i$ for some $i$.
Proof. For each $i$ we can choose syntomic (resp. smooth, resp. étale) morphisms $g_{ij} : V_{ij} \to Y$ and morphisms $V_{ij} \times _ Y X \to U_ i$ over $X$, such that $\{ V_{ij} \times _ Y X \to U_ i\} $ are Zariski coverings, see Lemma 59.48.3. This in particular implies that $\bigcup _{ij} g_{ij}(V_{ij})$ contains the closed subset $f(X)$. Hence the family of syntomic (resp. smooth, resp. étale) maps $g_{ij}$ together with the open immersion $Y \setminus f(X) \to Y$ forms the desired syntomic (resp. smooth, resp. étale) covering of $Y$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #3276 by Kevin Carlson on
Comment #3368 by Johan on