Lemma 39.7.3. Let $G$ be a group scheme over a field. Then $G$ is a separated scheme.
Proof. Say $S = \mathop{\mathrm{Spec}}(k)$ with $k$ a field, and let $G$ be a group scheme over $S$. By Lemma 39.6.1 we have to show that $e : S \to G$ is a closed immersion. By Morphisms, Lemma 29.20.2 the image of $e : S \to G$ is a closed point of $G$. It is clear that $\mathcal{O}_ G \to e_*\mathcal{O}_ S$ is surjective, since $e_*\mathcal{O}_ S$ is a skyscraper sheaf supported at the neutral element of $G$ with value $k$. We conclude that $e$ is a closed immersion by Schemes, Lemma 26.24.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: