Lemma 39.6.3. Let $(G, m, e, i)$ be a group scheme over the scheme $S$. Denote $f : G \to S$ the structure morphism. Then there exist canonical isomorphisms
\[ \Omega _{G/S} \cong f^*\mathcal{C}_{S/G} \cong f^*e^*\Omega _{G/S} \]
where $\mathcal{C}_{S/G}$ denotes the conormal sheaf of the immersion $e$. In particular, if $S$ is the spectrum of a field, then $\Omega _{G/S}$ is a free $\mathcal{O}_ G$-module.
Proof.
By Morphisms, Lemma 29.32.10 we have
\[ \Omega _{G \times _ S G/G} = \text{pr}_0^*\Omega _{G/S} \]
where on the left hand side we view $G \times _ S G$ as a scheme over $G$ using $\text{pr}_1$. Let $\tau : G \times _ S G \to G \times _ S G$ be the “shearing map” given by $(g, h) \mapsto (m(g, h), h)$ on points. This map is an automorphism of $G \times _ S G$ viewed as a scheme over $G$ via the projection $\text{pr}_1$. Combining these two remarks we obtain an isomorphism
\[ \tau ^*\text{pr}_0^*\Omega _{G/S} \to \text{pr}_0^*\Omega _{G/S} \]
Since $\text{pr}_0 \circ \tau = m$ this can be rewritten as an isomorphism
\[ m^*\Omega _{G/S} \to \text{pr}_0^*\Omega _{G/S} \]
Pulling back this isomorphism by $(e \circ f, \text{id}_ G) : G \to G \times _ S G$ and using that $m \circ (e \circ f, \text{id}_ G) = \text{id}_ G$ and $\text{pr}_0 \circ (e \circ f, \text{id}_ G) = e \circ f$ we obtain an isomorphism
\[ \Omega _{G/S} \to f^*e^*\Omega _{G/S} \]
as desired. By Morphisms, Lemma 29.32.16 we have $\mathcal{C}_{S/G} \cong e^*\Omega _{G/S}$. If $S$ is the spectrum of a field, then any $\mathcal{O}_ S$-module on $S$ is free and the final statement follows.
$\square$
Comments (2)
Comment #6761 by Zhouhang Mᴀᴏ on
Comment #6762 by Johan on
There are also: