The Stacks project

Lemma 59.28.3. For any $n \in \mathbf{N}$ the sequence

\[ 0 \to \mu _{n, S} \to \mathbf{G}_{m, S} \xrightarrow {(\cdot )^ n} \mathbf{G}_{m, S} \to 0 \]

is a short exact sequence of sheaves on the site $(\mathit{Sch}/S)_{fppf}$ and $(\mathit{Sch}/S)_{syntomic}$.

Proof. By definition the sheaf $\mu _{n, S}$ is the kernel of the map $(\cdot )^ n$. Hence it suffices to show that the last map is surjective. Since the syntomic topology is weaker than the fppf topology, see Topologies, Lemma 34.7.2, it suffices to prove this for the syntomic topology. Let $U$ be a scheme over $S$. Let $f \in \mathbf{G}_ m(U) = \Gamma (U, \mathcal{O}_ U^*)$. We need to show that we can find a syntomic cover of $U$ over the members of which the restriction of $f$ is an $n$th power. Set

\[ U' = \underline{\mathop{\mathrm{Spec}}}_ U(\mathcal{O}_ U[T]/(T^ n-f)) \xrightarrow {\pi } U. \]

(See Constructions, Section 27.3 or 27.4 for a discussion of the relative spectrum.) Let $\mathop{\mathrm{Spec}}(A) \subset U$ be an affine open, and say $f|_{\mathop{\mathrm{Spec}}(A)}$ corresponds to the unit $a \in A^*$. Then $\pi ^{-1}(\mathop{\mathrm{Spec}}(A)) = \mathop{\mathrm{Spec}}(B)$ with $B = A[T]/(T^ n - a)$. The ring map $A \to B$ is finite free of rank $n$, hence it is faithfully flat, and hence we conclude that $\mathop{\mathrm{Spec}}(B) \to \mathop{\mathrm{Spec}}(A)$ is surjective. Since this holds for every affine open in $U$ we conclude that $\pi $ is surjective. In addition, $B$ is a global relative complete intersection over $A$, so the ring map $A \to B$ is standard syntomic, in particular syntomic. Since this holds for every affine open of $U$ we conclude that $\pi $ is syntomic. Hence $\mathcal{U} = \{ \pi : U' \to U\} $ is a syntomic covering. Moreover, $f|_{U'} = (f')^ n$ where $f'$ is the class of $T$ in $\Gamma (U', \mathcal{O}_{U'}^*)$, so $\mathcal{U}$ has the desired property. $\square$


Comments (2)

Comment #2048 by Yuzhou Gu on

Should "stronger than" be "weaker than"?

There are also:

  • 8 comment(s) on Section 59.28: Kummer theory

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 040N. Beware of the difference between the letter 'O' and the digit '0'.