Definition 64.27.1. A subgroup of the form $\text{Stab}(\overline y\in F_{\overline{x}}(Y))\subset \pi _1(X, \overline{x})$ is called open.
64.27 Fundamental groups
This material is discussed in more detail in the chapter on fundamental groups. See Fundamental Groups, Section 58.1. Let $X$ be a connected scheme and let $\overline{x}\to X$ be a geometric point. Consider the functor
Set
Note that for every finite étale $Y \to X$ there is an action
Theorem 64.27.2 (Grothendieck). Let $X$ be a connected scheme.
There is a topology on $\pi _1(X, \overline{x})$ such that the open subgroups form a fundamental system of open nbhds of $e\in \pi _1(X, \overline x)$.
With topology of (1) the group $\pi _1(X, \overline{x})$ is a profinite group.
The functor
is an equivalence of categories.
Proof. See [SGA1]. $\square$
Proposition 64.27.3. Let $X$ be an integral normal Noetherian scheme. Let $\overline y\to X$ be an algebraic geometric point lying over the generic point $\eta \in X$. Then ($\kappa (\eta )$, function field of $X$) where is the max sub-extension such that for every finite sub extension $M\supset L\supset \kappa (\eta )$ the normalization of $X$ in $L$ is finite étale over $X$.
Proof. Omitted. $\square$
Change of base point. For any $\overline{x}_1, \overline{x}_2$ geom. points of $X$ there exists an isom. of fibre functions
(This is a path from $\overline{x}_1$ to $\overline{x}_2$.) Conjugation by this path gives isom
well defined up to inner actions.
Functoriality. For any morphism $X_1\to X_2$ of connected schemes any $\overline{x}\in X_1$ there is a canonical map
(Why? because the fibre functor ...)
Base field. Let $X$ be a variety over a field $k$. Then we get
This map is surjective if and only if $X$ is geometrically connected over $k$. So in the geometrically connected case we get s.e.s. of profinite groups
($\pi _1(X_{\overline{k}}, \overline{x})$: geometric fundamental group of $X$, $\pi _1(X, \overline{x})$: arithmetic fundamental group of $X$)
Comparison. If $X$ is a variety over $\mathbf{C}$ then
(have $x\in X(\mathbf{C})$)
Frobenii. $X$ variety over $k$, $\# k < \infty $. For any $x \in X$ closed point, let
be the geometric frobenius. Let $\overline\eta $ be an alg. geom. gen. pt. Then
Easy fact:
Recall: $\deg (x) = [\kappa (x):k]$
Fundamental groups and lisse sheaves. Let $X$ be a connected scheme, $\overline{x}$ geom. pt. There are equivalences of categories
In particular lisse $\mathbf{Q}_ l$-sheaves correspond to continuous homomorphisms
Notation: A module with action $(M, \rho )$ corresponds to the sheaf $\mathcal{F}_\rho $.
Trace formulas. $X$ variety over $k$, $\# k < \infty $.
$\Lambda $ finite ring $(\# \Lambda , \# k)=1$
\[ \rho : \pi _1(X, \overline{x})\to \text{GL}_ r(\Lambda ) \]continuous. For every $n\geq 1$ we have
\[ \sum _{d|n}d\left( \sum _{x\in |X|, \atop \deg (x)=d} \text{Tr}(\rho (F_ x^{n/d}))\right) = \text{Tr}\left( (\pi _ x^ n)^* |_{R\Gamma _ c(X_{\overline{k}}, \mathcal{F}_\rho )}\right) \]$l\neq char(k)$ prime, $\rho : \pi _1(X, \overline{x})\to \text{GL}_ r(\mathbf{Q}_ l)$. For any $n\geq 1$
\[ \sum _{d|n} d\left( \sum _{x\in |X| \atop \deg (x)=d} \text{Tr} \left( \rho (F_ x^{n/d}) \right) \right) = \sum _{i = 0}^{2\dim X} (-1)^ i \text{Tr}\left( \pi _ X^* |_{H_ c^ i(X_{\overline{k}}, \mathcal{F}_\rho )}\right) \]
Weil conjectures. (Deligne-Weil I, 1974) $X$ smooth proj. over $k$, $\# k = q$, then the eigenvalues of $\pi _ X^*$ on $H^ i(X_{\overline{k}}, \mathbf{Q}_ l)$ are algebraic integers $\alpha $ with $|\alpha |=q^{1/2}$.
Deligne's conjectures. (almost completely proved by Lafforgue + $\ldots $) Let $X$ be a normal variety over $k$ finite
continuous. Assume: $\rho $ irreducible $\det (\rho )$ of finite order. Then
there exists a number field $E$ such that for all $x\in |X|$(closed points) the char. poly of $\rho (F_ x)$ has coefficients in $E$.
for any $x\in |X|$ the eigenvalues $\alpha _{x, i}$, $i = 1, \ldots , r$ of $\rho (F_ x)$ have complex absolute value $1$. (these are algebraic numbers not necessary integers)
for every finite place $\lambda $( not dividing $p$), of $E$ (maybe after enlarging $E$ a bit) there exists
\[ \rho \lambda : \pi _1(X, \overline{x}) \to \text{GL}_ r(E_\lambda ) \]compatible with $\rho $. (some char. polys of $F_ x$'s)
Theorem 64.27.4 (Deligne, Weil II). For a sheaf $\mathcal{F}_\rho $ with $\rho $ satisfying the conclusions of the conjecture above then the eigenvalues of $\pi _ X^*$ on $H_ c^ i(X_{\overline{k}}, \mathcal{F}_{\rho })$ are algebraic numbers $\alpha $ with absolute values Moreover, if $X$ smooth and proj. then $w = i$.
Proof. See [WeilII]. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)