64.25 Exponential sums
A standard problem in number theory is to evaluate sums of the form
In our context, this can be interpreted as a cohomological sum as follows. Consider the base scheme $S = \mathop{\mathrm{Spec}}(\mathbf{F}_ p[x, \frac{1}{x(x - 1)}])$ and the affine curve $f : X \to \mathbf{P}^1-\{ 0, 1, \infty \} $ over $S$ given by the equation $y^{p - 1} = x^ a(x - 1)^ b$. This is a finite étale Galois cover with group $\mathbf{F}_ p^*$ and there is a splitting
where $\chi $ varies over the characters of $\mathbf{F}_ p^*$ and $\mathcal{F}_\chi $ is a rank 1 lisse $\mathbf{Q}_\ell $-sheaf on which $\mathbf{F}_ p^*$ acts via $\chi $ on stalks. We get a corresponding decomposition
and the cohomological interpretation of the exponential sum is given by the trace formula applied to $\mathcal{F}_\chi $ over $\mathbf{P}^1 - \{ 0, 1, \infty \} $ for some suitable $\chi $. It reads
The general yoga of Weil suggests that there should be some cancellation in the sum. Applying (roughly) the Riemann-Hurwitz formula, we see that
so $g_ X\approx p/2$, which also suggests that the $\chi $-pieces are small.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)