Lemma 64.23.1. Let $X$ be a smooth, projective, geometrically irreducible curve over a finite field $k$. Then
the $L$-function $L(X, \mathbf{Q}_\ell )$ is a rational function,
the eigenvalues $\alpha _1, \ldots , \alpha _{2g}$ of $\pi _ X^*$ on $H^1(X_{\bar k}, \mathbf{Q}_\ell )$ are algebraic integers independent of $\ell $,
the number of rational points of $X$ on $k_ n$, where $[k_ n : k] = n$, is
\[ \# X(k_ n) = 1 - \sum \nolimits _{i = 1}^{2g}\alpha _ i^ n + q^ n, \]for each $i$, $|\alpha _ i| < q$.
Comments (0)