Theorem 64.20.1 (Finite Coefficients). Let $X$ be a scheme of finite type over a finite field $k$. Let $\Lambda $ be a finite ring of order prime to the characteristic of $k$ and $\mathcal{F}$ a constructible flat $\Lambda $-module on $X_{\acute{e}tale}$. Then
\[ L(X, \mathcal{F}) = \det (1 - \pi _ X^*\ T |_{R\Gamma _ c(X_{\bar k}, \mathcal{F})})^{-1} \in \Lambda [[T]]. \]
Comments (0)
There are also: