Lemma 64.15.5. Let $P$ be a finite projective $A[G]$-module and $M$ a $\Lambda [G]$-module, finite projective as a $\Lambda $-module. Then $P \otimes _ A M$ is a finite projective $\Lambda [G]$-module, for the structure induced by the diagonal action of $G$.
Proof. For any $\Lambda [G]$-module $N$ one has
\[ \mathop{\mathrm{Hom}}\nolimits _{\Lambda [G]}\left(P \otimes _ A M, N\right)= \mathop{\mathrm{Hom}}\nolimits _{A[G]}\left(P, \mathop{\mathrm{Hom}}\nolimits _{\Lambda }(M, N)\right) \]
where the $G$-action on $\mathop{\mathrm{Hom}}\nolimits _{\Lambda }(M, N)$ is given by $(g\cdot \varphi )(m) = g \varphi (g^{-1} m) $. Now it suffices to observe that the right-hand side is a composition of exact functors, because of the projectivity of $P$ and $M$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)