Theorem 64.14.3 (Lefschetz Trace Formula). Let $X$ be a projective curve over a finite field $k$, $\Lambda $ a finite ring and $K \in D_{ctf}(X, \Lambda )$. Then the global and local Lefschetz numbers of $K$ are equal, i.e.,
64.14.3.1
\begin{equation} \label{trace-equation-trace-formula} \text{Tr}(\pi ^*_ X |_{R\Gamma (X_{\bar k}, K)}) = \sum \nolimits _{x\in X(k)} \text{Tr}(\pi _ X |_{K_{\bar x}}) \end{equation}
in $\Lambda ^\natural $.
Comments (0)