Lemma 64.7.2. If $\mathcal{A}$ has enough injectives, then $DF^+(\mathcal{A}) \cong K^+(\mathcal{I})$, where $\mathcal{I}$ is the full additive subcategory of $\text{Fil}^ f(\mathcal{A})$ consisting of filtered injective objects. Similarly, if $\mathcal{A}$ has enough projectives, then $DF^-(\mathcal{A}) \cong K^-(\mathcal{P})$, where $\mathcal P$ is the full additive subcategory of $\text{Fil}^ f(\mathcal{A})$ consisting of filtered projective objects.
Proof. Omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #8298 by Xiaolong Liu on
Comment #8924 by Stacks project on
There are also: