Lemma 59.73.1. Let $j : U \to X$ be an étale morphism of quasi-compact and quasi-separated schemes.
The sheaf $h_ U$ is a constructible sheaf of sets.
The sheaf $j_!\underline{M}$ is a constructible abelian sheaf for a finite abelian group $M$.
If $\Lambda $ is a Noetherian ring and $M$ is a finite $\Lambda $-module, then $j_!\underline{M}$ is a constructible sheaf of $\Lambda $-modules on $X_{\acute{e}tale}$.
Comments (0)