Theorem 59.67.8. Let $K$ be a $C_1$ field. Then $\text{Br}(K) = 0$.
Proof. Let $D$ be a finite dimensional division algebra over $K$ with center $K$. We have seen that
uniquely up to inner isomorphism. Hence the determinant $\det : \text{Mat}_ d(K^{sep}) \to K^{sep}$ is Galois invariant and descends to a homogeneous degree $d$ map
called the reduced norm. Since $K$ is $C_1$, if $d > 1$, then there exists a nonzero $x \in D$ with $N_\text {red}(x) = 0$. This clearly implies that $x$ is not invertible, which is a contradiction. Hence $\text{Br}(K) = 0$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: