Lemma 59.59.2. Notation and assumptions as in Lemma 59.59.1. Let $\mathcal{F}$ be an abelian sheaf on $\mathop{\mathrm{Spec}}(K)_{\acute{e}tale}$ which corresponds to the $G$-module $M$. Then
in $D(\textit{Ab})$ we have a canonical isomorphism $R\Gamma (S, \mathcal{F}) = R\Gamma _ G(M)$,
$H_{\acute{e}tale}^0(S, \mathcal{F}) = M^ G$, and
$H_{\acute{e}tale}^ q(S, \mathcal{F}) = H^ q(G, M)$.
Comments (0)