Example 59.32.7. In the case $R = \mathbf{C}[[t]]$, the étale $R$-algebras are finite products of the trivial extension $R \to R$ and the extensions $R \to R[X, X^{-1}]/(X^ n-t)$. The latter ones factor through the open $D(t) \subset \mathop{\mathrm{Spec}}(R)$, so any étale covering can be refined by the covering $\{ \text{id} : \mathop{\mathrm{Spec}}(R) \to \mathop{\mathrm{Spec}}(R)\} $. We will see below that this is a somewhat general fact on étale coverings of spectra of henselian rings. This will show that higher étale cohomology of the spectrum of a strictly henselian ring is zero.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: