Example 59.9.2. Given an object $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, we consider the rule
\[ \begin{matrix} U
& \longmapsto
& h_ X(U) = \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(U, X)
\\ V \xrightarrow {\varphi } U
& \longmapsto
& (\psi \mapsto \psi \circ \varphi ) : h_ X(U) \to h_ X(V).
\end{matrix} \]
This defines a functor $h_ X : \mathcal{C}^{opp} \to \textit{Sets}$ and hence a presheaf. This is called the representable presheaf associated to $X$. It is not true that representable presheaves are sheaves in every topology on every site.
Comments (0)
There are also: