The Stacks project

Lemma 67.41.7. The base change of a morphism of algebraic spaces which satisfies the existence part of (resp. uniqueness part of) the valuative criterion by any morphism of algebraic spaces satisfies the existence part of (resp. uniqueness part of) the valuative criterion.

Proof. Let $f : X \to Y$ be a morphism of algebraic spaces over the scheme $S$. Let $Z \to Y$ be any morphism of algebraic spaces over $S$. Consider a solid commutative diagram of the following shape

\[ \xymatrix{ \mathop{\mathrm{Spec}}(K) \ar[r] \ar[d] & Z \times _ Y X \ar[r] \ar[d] & X \ar[d] \\ \mathop{\mathrm{Spec}}(A) \ar[r] \ar@{-->}[ru] \ar@{-->}[rru] & Z \ar[r] & Y } \]

Then the set of north-west dotted arrows making the diagram commute is in 1-1 correspondence with the set of west-north-west dotted arrows making the diagram commute. This proves the lemma in the case of “uniqueness”. For the existence part, assume $f$ satisfies the existence part of the valuative criterion. If we are given a solid commutative diagram as above, then by assumption there exists an extension $K'/K$ of fields and a valuation ring $A' \subset K'$ dominating $A$ and a morphism $\mathop{\mathrm{Spec}}(A') \to X$ fitting into the following commutative diagram

\[ \xymatrix{ \mathop{\mathrm{Spec}}(K') \ar[r] \ar[d] & \mathop{\mathrm{Spec}}(K) \ar[r] & Z \times _ Y X \ar[r] & X \ar[d] \\ \mathop{\mathrm{Spec}}(A') \ar[r] \ar[rrru] & \mathop{\mathrm{Spec}}(A) \ar[r] & Z \ar[r] & Y } \]

And by the remarks above the skew arrow corresponds to an arrow $\mathop{\mathrm{Spec}}(A') \to Z \times _ Y X$ as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03IY. Beware of the difference between the letter 'O' and the digit '0'.