Lemma 68.12.8. Let $S$ be a scheme. Let $k$ be a field. Let $X$ be an algebraic space over $S$ and assume that there exists a surjective étale morphism $\mathop{\mathrm{Spec}}(k) \to X$. If $X$ is decent, then $X \cong \mathop{\mathrm{Spec}}(k')$ where $k/k'$ is a finite separable extension.
Proof. The assumption implies that $|X| = \{ x\} $ is a singleton. Since $X$ is decent we can find a quasi-compact monomorphism $\mathop{\mathrm{Spec}}(k') \to X$ whose image is $x$. Then the projection $U = \mathop{\mathrm{Spec}}(k') \times _ X \mathop{\mathrm{Spec}}(k) \to \mathop{\mathrm{Spec}}(k)$ is a monomorphism, whence $U = \mathop{\mathrm{Spec}}(k)$, see Schemes, Lemma 26.23.11. Hence the projection $\mathop{\mathrm{Spec}}(k) = U \to \mathop{\mathrm{Spec}}(k')$ is étale and we win. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)