Lemma 115.16.3. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. If there exists a Zariski open covering $X = \bigcup X_ i$ such that each $X_ i$ is very reasonable, then $X$ is very reasonable.
Proof. This is case $(\epsilon )$ of Decent Spaces, Lemma 68.5.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)