The Stacks project

Lemma 35.9.1. Let $S$ be a scheme. Let

  1. $\tau \in \{ Zariski, \linebreak[0] fppf, \linebreak[0] {\acute{e}tale}, \linebreak[0] smooth, \linebreak[0] syntomic\} $ and $\mathcal{C} = (\mathit{Sch}/S)_\tau $, or

  2. let $\tau = {\acute{e}tale}$ and $\mathcal{C} = S_{\acute{e}tale}$, or

  3. let $\tau = Zariski$ and $\mathcal{C} = S_{Zar}$.

Let $\mathcal{F}$ be an abelian sheaf on $\mathcal{C}$. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ be affine. Let $\mathcal{U} = \{ U_ i \to U\} _{i = 1, \ldots , n}$ be a standard affine $\tau $-covering in $\mathcal{C}$. Then

  1. $\mathcal{V} = \{ \coprod _{i = 1, \ldots , n} U_ i \to U\} $ is a $\tau $-covering of $U$,

  2. $\mathcal{U}$ is a refinement of $\mathcal{V}$, and

  3. the induced map on Čech complexes (Cohomology on Sites, Equation (21.8.2.1))

    \[ \check{\mathcal{C}}^\bullet (\mathcal{V}, \mathcal{F}) \longrightarrow \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}) \]

    is an isomorphism of complexes.

Proof. This follows because

\[ (\coprod \nolimits _{i_0 = 1, \ldots , n} U_{i_0}) \times _ U \ldots \times _ U (\coprod \nolimits _{i_ p = 1, \ldots , n} U_{i_ p}) = \coprod \nolimits _{i_0, \ldots , i_ p \in \{ 1, \ldots , n\} } U_{i_0} \times _ U \ldots \times _ U U_{i_ p} \]

and the fact that $\mathcal{F}(\coprod _ a V_ a) = \prod _ a \mathcal{F}(V_ a)$ since disjoint unions are $\tau $-coverings. $\square$


Comments (2)

Comment #2151 by Katha on

?


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03FI. Beware of the difference between the letter 'O' and the digit '0'.