The Stacks project

21.5 First cohomology and extensions

Lemma 21.5.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules on $\mathcal{C}$. There is a canonical bijection

\[ \mathop{\mathrm{Ext}}\nolimits ^1_{\textit{Mod}(\mathcal{O})}(\mathcal{O}, \mathcal{F}) \longrightarrow H^1(\mathcal{C}, \mathcal{F}) \]

which associates to the extension

\[ 0 \to \mathcal{F} \to \mathcal{E} \to \mathcal{O} \to 0 \]

the image of $1 \in \Gamma (\mathcal{C}, \mathcal{O})$ in $H^1(\mathcal{C}, \mathcal{F})$.

Proof. Let us construct the inverse of the map given in the lemma. Let $\xi \in H^1(\mathcal{C}, \mathcal{F})$. Choose an injection $\mathcal{F} \subset \mathcal{I}$ with $\mathcal{I}$ injective in $\textit{Mod}(\mathcal{O})$. Set $\mathcal{Q} = \mathcal{I}/\mathcal{F}$. By the long exact sequence of cohomology, we see that $\xi $ is the image of a section $\tilde\xi \in \Gamma (\mathcal{C}, \mathcal{Q}) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{O}, \mathcal{Q})$. Now, we just form the pullback

\[ \xymatrix{ 0 \ar[r] & \mathcal{F} \ar[r] \ar@{=}[d] & \mathcal{E} \ar[r] \ar[d] & \mathcal{O} \ar[r] \ar[d]^{\tilde\xi } & 0 \\ 0 \ar[r] & \mathcal{F} \ar[r] & \mathcal{I} \ar[r] & \mathcal{Q} \ar[r] & 0 } \]

see Homology, Section 12.6. $\square$

The following lemma will be superseded by the more general Lemma 21.12.4.

Lemma 21.5.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules on $\mathcal{C}$. Let $\mathcal{F}_{ab}$ denote the underlying sheaf of abelian groups. Then there is a functorial isomorphism

\[ H^1(\mathcal{C}, \mathcal{F}_{ab}) = H^1(\mathcal{C}, \mathcal{F}) \]

where the left hand side is cohomology computed in $\textit{Ab}(\mathcal{C})$ and the right hand side is cohomology computed in $\textit{Mod}(\mathcal{O})$.

Proof. Let $\underline{\mathbf{Z}}$ denote the constant sheaf $\mathbf{Z}$. As $\textit{Ab}(\mathcal{C}) = \textit{Mod}(\underline{\mathbf{Z}})$ we may apply Lemma 21.5.1 twice, and it follows that we have to show

\[ \mathop{\mathrm{Ext}}\nolimits ^1_{\textit{Mod}(\mathcal{O})}(\mathcal{O}, \mathcal{F}) = \mathop{\mathrm{Ext}}\nolimits ^1_{\textit{Mod}(\underline{\mathbf{Z}})}( \underline{\mathbf{Z}}, \mathcal{F}_{ab}). \]

Suppose that $0 \to \mathcal{F} \to \mathcal{E} \to \mathcal{O} \to 0$ is an extension in $\textit{Mod}(\mathcal{O})$. Then we can use the obvious map of abelian sheaves $1 : \underline{\mathbf{Z}} \to \mathcal{O}$ and pullback to obtain an extension $\mathcal{E}_{ab}$, like so:

\[ \xymatrix{ 0 \ar[r] & \mathcal{F}_{ab} \ar[r] \ar@{=}[d] & \mathcal{E}_{ab} \ar[r] \ar[d] & \underline{\mathbf{Z}} \ar[r] \ar[d]^{1} & 0 \\ 0 \ar[r] & \mathcal{F} \ar[r] & \mathcal{E} \ar[r] & \mathcal{O} \ar[r] & 0 } \]

The converse is a little more fun. Suppose that $0 \to \mathcal{F}_{ab} \to \mathcal{E}_{ab} \to \underline{\mathbf{Z}} \to 0$ is an extension in $\textit{Mod}(\underline{\mathbf{Z}})$. Since $\underline{\mathbf{Z}}$ is a flat $\underline{\mathbf{Z}}$-module we see that the sequence

\[ 0 \to \mathcal{F}_{ab} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} \to \mathcal{E}_{ab} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} \to \underline{\mathbf{Z}} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} \to 0 \]

is exact, see Modules on Sites, Lemma 18.28.9. Of course $\underline{\mathbf{Z}} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} = \mathcal{O}$. Hence we can form the pushout via the ($\mathcal{O}$-linear) multiplication map $\mu : \mathcal{F} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} \to \mathcal{F}$ to get an extension of $\mathcal{O}$ by $\mathcal{F}$, like this

\[ \xymatrix{ 0 \ar[r] & \mathcal{F}_{ab} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} \ar[r] \ar[d]^\mu & \mathcal{E}_{ab} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} \ar[r] \ar[d] & \mathcal{O} \ar[r] \ar@{=}[d] & 0 \\ 0 \ar[r] & \mathcal{F} \ar[r] & \mathcal{E} \ar[r] & \mathcal{O} \ar[r] & 0 } \]

which is the desired extension. We omit the verification that these constructions are mutually inverse. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03F0. Beware of the difference between the letter 'O' and the digit '0'.