Definition 21.8.1. Let $\mathcal{C}$ be a category. Let $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ be a family of morphisms with fixed target such that all fibre products $U_{i_0} \times _ U \ldots \times _ U U_{i_ p}$ exist in $\mathcal{C}$. Let $\mathcal{F}$ be an abelian presheaf on $\mathcal{C}$. The complex $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})$ is the Čech complex associated to $\mathcal{F}$ and the family $\mathcal{U}$. Its cohomology groups $H^ i(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}))$ are called the Čech cohomology groups of $\mathcal{F}$ with respect to $\mathcal{U}$. They are denoted $\check H^ i(\mathcal{U}, \mathcal{F})$.
21.8 The Čech complex and Čech cohomology
Let $\mathcal{C}$ be a category. Let $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ be a family of morphisms with fixed target, see Sites, Definition 7.6.1. Assume that all fibre products $U_{i_0} \times _ U \ldots \times _ U U_{i_ p}$ exist in $\mathcal{C}$. Let $\mathcal{F}$ be an abelian presheaf on $\mathcal{C}$. Set
This is an abelian group. For $s \in \check{\mathcal{C}}^ p(\mathcal{U}, \mathcal{F})$ we denote $s_{i_0\ldots i_ p}$ its value in the factor $\mathcal{F}(U_{i_0} \times _ U \ldots \times _ U U_{i_ p})$. We define
by the formula
where the restriction is via the projection map
It is straightforward to see that $d \circ d = 0$. In other words $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})$ is a complex.
We observe that any covering $\{ U_ i \to U\} $ of a site $\mathcal{C}$ is a family of morphisms with fixed target to which the definition applies.
Lemma 21.8.2. Let $\mathcal{C}$ be a site. Let $\mathcal{F}$ be an abelian presheaf on $\mathcal{C}$. The following are equivalent
$\mathcal{F}$ is an abelian sheaf on $\mathcal{C}$ and
for every covering $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ of the site $\mathcal{C}$ the natural map
(see Sites, Section 7.10) is bijective.
Proof. This is true since the sheaf condition is exactly that $\mathcal{F}(U) \to \check{H}^0(\mathcal{U}, \mathcal{F})$ is bijective for every covering of $\mathcal{C}$. $\square$
Let $\mathcal{C}$ be a category. Let $\mathcal{U} = \{ U_ i \to U\} _{i\in I}$ be a family of morphisms of $\mathcal{C}$ with fixed target such that all fibre products $U_{i_0} \times _ U \ldots \times _ U U_{i_ p}$ exist in $\mathcal{C}$. Let $\mathcal{V} = \{ V_ j \to V\} _{j\in J}$ be another. Let $f : U \to V$, $\alpha : I \to J$ and $f_ i : U_ i \to V_{\alpha (i)}$ be a morphism of families of morphisms with fixed target, see Sites, Section 7.8. In this case we get a map of Čech complexes
which in degree $p$ is given by
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #3943 by Nicolas Müller on
Comment #3954 by Johan on