Lemma 29.18.1. Let $f : X \to S$ be a morphism. If $S$ is Nagata and $f$ locally of finite type then $X$ is Nagata. If $S$ is universally Japanese and $f$ locally of finite type then $X$ is universally Japanese.
Proof. For “universally Japanese” this follows from Algebra, Lemma 10.162.4. For “Nagata” this follows from Algebra, Proposition 10.162.15. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)