Lemma 4.34.1. Let $\mathcal{C}$ be a category. Let $p : \mathcal{S} \to \mathcal{C}$ and $p' : \mathcal{S}' \to \mathcal{C}$ be fibred categories. Let $F : \mathcal{S} \to \mathcal{S}'$ be a $1$-morphism of fibred categories over $\mathcal{C}$. Consider the category $\mathcal{I}_{\mathcal{S}/\mathcal{S}'}$ over $\mathcal{C}$ whose
objects are pairs $(x, \alpha )$ where $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S})$ and $\alpha : x \to x$ is an automorphism with $F(\alpha ) = \text{id}$,
morphisms $(x, \alpha ) \to (y, \beta )$ are given by morphisms $\phi : x \to y$ such that
\[ \xymatrix{ x\ar[r]_\phi \ar[d]_\alpha & y\ar[d]^{\beta } \\ x\ar[r]^\phi & y \\ } \]commutes, and
the functor $\mathcal{I}_{\mathcal{S}/\mathcal{S}'} \to \mathcal{C}$ is given by $(x, \alpha ) \mapsto p(x)$.
Then
there is an equivalence
\[ \mathcal{I}_{\mathcal{S}/\mathcal{S}'} \longrightarrow \mathcal{S} \times _{\Delta , (\mathcal{S} \times _{\mathcal{S}'} \mathcal{S}), \Delta } \mathcal{S} \]in the $(2, 1)$-category of categories over $\mathcal{C}$, and
$\mathcal{I}_{\mathcal{S}/\mathcal{S}'}$ is a fibred category over $\mathcal{C}$.
Comments (0)