The Stacks project

30.11 Depth

In this section we talk a little bit about depth and property $(S_ k)$ for coherent modules on locally Noetherian schemes. Note that we have already discussed this notion for locally Noetherian schemes in Properties, Section 28.12.

Definition 30.11.1. Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. Let $k \geq 0$ be an integer.

  1. We say $\mathcal{F}$ has depth $k$ at a point $x$ of $X$ if $\text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}_ x) = k$.

  2. We say $X$ has depth $k$ at a point $x$ of $X$ if $\text{depth}(\mathcal{O}_{X, x}) = k$.

  3. We say $\mathcal{F}$ has property $(S_ k)$ if

    \[ \text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}_ x) \geq \min (k, \dim (\text{Supp}(\mathcal{F}_ x))) \]

    for all $x \in X$.

  4. We say $X$ has property $(S_ k)$ if $\mathcal{O}_ X$ has property $(S_ k)$.

Any coherent sheaf satisfies condition $(S_0)$. Condition $(S_1)$ is equivalent to having no embedded associated points, see Divisors, Lemma 31.4.3.

Lemma 30.11.2. Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_ X$-modules and $x \in X$.

  1. If $\mathcal{G}_ x$ has depth $\geq 1$, then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})_ x$ has depth $\geq 1$.

  2. If $\mathcal{G}_ x$ has depth $\geq 2$, then $\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})_ x$ has depth $\geq 2$.

Proof. Observe that $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})$ is a coherent $\mathcal{O}_ X$-module by Lemma 30.9.4. Coherent modules are of finite presentation (Lemma 30.9.1) hence taking stalks commutes with taking $\mathop{\mathcal{H}\! \mathit{om}}\nolimits $ and $\mathop{\mathrm{Hom}}\nolimits $, see Modules, Lemma 17.22.4. Thus we reduce to the case of finite modules over local rings which is More on Algebra, Lemma 15.23.10. $\square$

Lemma 30.11.3. Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_ X$-modules.

  1. If $\mathcal{G}$ has property $(S_1)$, then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})$ has property $(S_1)$.

  2. If $\mathcal{G}$ has property $(S_2)$, then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})$ has property $(S_2)$.

Proof. Follows immediately from Lemma 30.11.2 and the definitions. $\square$

We have seen in Properties, Lemma 28.12.3 that a locally Noetherian scheme is Cohen-Macaulay if and only if $(S_ k)$ holds for all $k$. Thus it makes sense to introduce the following definition, which is equivalent to the condition that all stalks are Cohen-Macaulay modules.

Definition 30.11.4. Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. We say $\mathcal{F}$ is Cohen-Macaulay if and only if $(S_ k)$ holds for all $k \geq 0$.

Lemma 30.11.5. Let $X$ be a regular scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. The following are equivalent

  1. $\mathcal{F}$ is Cohen-Macaulay and $\text{Supp}(\mathcal{F}) = X$,

  2. $\mathcal{F}$ is finite locally free of rank $> 0$.

Proof. Let $x \in X$. If (2) holds, then $\mathcal{F}_ x$ is a free $\mathcal{O}_{X, x}$-module of rank $> 0$. Hence $\text{depth}(\mathcal{F}_ x) = \dim (\mathcal{O}_{X, x})$ because a regular local ring is Cohen-Macaulay (Algebra, Lemma 10.106.3). Conversely, if (1) holds, then $\mathcal{F}_ x$ is a maximal Cohen-Macaulay module over $\mathcal{O}_{X, x}$ (Algebra, Definition 10.103.8). Hence $\mathcal{F}_ x$ is free by Algebra, Lemma 10.106.6. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0340. Beware of the difference between the letter 'O' and the digit '0'.