The Stacks project

Lemma 5.6.4. Let $f : X \to Y$ be surjective, open, continuous map of topological spaces. Let $T \subset Y$ be a subset. Then

  1. $f^{-1}(\overline{T}) = \overline{f^{-1}(T)}$,

  2. $T \subset Y$ is closed if and only if $f^{-1}(T)$ is closed,

  3. $T \subset Y$ is open if and only if $f^{-1}(T)$ is open, and

  4. $T \subset Y$ is locally closed if and only if $f^{-1}(T)$ is locally closed.

In particular we see that $f$ is submersive.

Proof. It is clear that $\overline{f^{-1}(T)} \subset f^{-1}(\overline{T})$. If $x \in X$, and $x \not\in \overline{f^{-1}(T)}$, then there exists an open neighbourhood $x \in U \subset X$ with $U \cap f^{-1}(T) = \emptyset $. Since $f$ is open we see that $f(U)$ is an open neighbourhood of $f(x)$ not meeting $T$. Hence $x \not\in f^{-1}(\overline{T})$. This proves (1). Part (2) is an easy consequence of (1). Part (3) is obvious from the fact that $f$ is open and surjective. For (4), if $f^{-1}(T)$ is locally closed, then $f^{-1}(T) \subset \overline{f^{-1}(T)} = f^{-1}(\overline{T})$ is open, and hence by (3) applied to the map $f^{-1}(\overline{T}) \to \overline{T}$ we see that $T$ is open in $\overline{T}$, i.e., $T$ is locally closed. $\square$


Comments (2)

Comment #3561 by Laurent Moret-Bailly on

Typos in (2), (3), (4): "if and only"

There are also:

  • 2 comment(s) on Section 5.6: Submersive maps

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02YB. Beware of the difference between the letter 'O' and the digit '0'.