Definition 115.23.9. Let $X$ be a scheme. Let $\{ D_ i\} _{i \in I}$ be a locally finite collection of effective Cartier divisors on $X$. Suppose given a function $I \to \mathbf{Z}_{\geq 0}$, $i \mapsto n_ i$. The sum of the effective Cartier divisors $D = \sum n_ i D_ i$, is the unique effective Cartier divisor $D \subset X$ such that on any quasi-compact open $U \subset X$ we have $D|_ U = \sum _{D_ i \cap U \not= \emptyset } n_ iD_ i|_ U$ is the sum as in Divisors, Definition 31.13.6.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)