Lemma 29.51.9. Let $X$, $Y$, $Z$ be integral schemes. Let $f : X \to Y$ and $g : Y \to Z$ be dominant morphisms locally of finite type. Assume that $[R(X) : R(Y)] < \infty $ and $[R(Y) : R(Z)] < \infty $. Then
\[ \deg (X/Z) = \deg (X/Y) \deg (Y/Z). \]
Comments (0)
There are also: