Lemma 5.11.2. Let $X$ be a topological space. Let $Y \subset X$ be an irreducible closed subset. Let $U \subset X$ be an open subset such that $Y \cap U$ is nonempty. Then
\[ \text{codim}(Y, X) = \text{codim}(Y \cap U, U) \]
Proof. The rule $T \mapsto \overline{T}$ defines a bijective inclusion preserving map between the closed irreducible subsets of $U$ and the closed irreducible subsets of $X$ which meet $U$. Using this the lemma easily follows. Details omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: