The Stacks project

Exercise 111.50.3. Suppose that $R$ is a ring and

\[ A = R[x_1, \ldots , x_ n]/(f_1, \ldots , f_ n). \]

Note that we are assuming that $A$ is presented by the same number of equations as variables. Thus the matrix of partial derivatives

\[ ( \partial f_ i / \partial x_ j ) \]

is $n \times n$, i.e., a square matrix. Assume that its determinant is invertible as an element in $A$. Note that this is exactly the condition that says that $\Omega _{A/R} = (0)$ in this case of $n$-generators and $n$ relations. Let $\pi : B' \to B$ be a surjection of $R$-algebras whose kernel $J$ has square zero (as an ideal in $B'$). Let $\varphi : A \to B$ be a homomorphism of $R$-algebras. Show there exists a unique homomorphism of $R$-algebras $\varphi ' : A \to B'$ such that $\varphi = \pi \circ \varphi '$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02FE. Beware of the difference between the letter 'O' and the digit '0'.