Exercise 111.30.12. Let $\mathcal{A}$ be an abelian category. Let $K^\bullet $, $K^\bullet $ be complexes of $\text{Fil}^ f(\mathcal{A})$. Assume
$K^\bullet $ bounded below and filtered acyclic, and
$I^\bullet $ bounded below and consisting of filtered injective objects.
Then any morphism $K^\bullet \to I^\bullet $ is homotopic to zero.
Comments (0)