Lemma 110.47.1. There exists an affine scheme $X = \mathop{\mathrm{Spec}}(A)$ and an injective $A$-module $J$ such that $\widetilde{J}$ is not a flasque sheaf on $X$. Even the restriction $\Gamma (X, \widetilde{J}) \to \Gamma (U, \widetilde{J})$ with $U$ a standard open need not be surjective.
Proof. See above. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)