Lemma 85.31.1. Let $X \to S$ be a morphism of schemes. Suppose $Y \to (X/S)_\bullet $ is a cartesian morphism of simplicial schemes. For $y \in Y_0$ a point define
\[ T_ y = \{ y' \in Y_0 \mid \exists \ y_1 \in Y_1: d^1_1(y_1) = y, d^1_0(y_1) = y'\} \]
as a subset of $Y_0$. Then $y \in T_ y$ and $T_ y \cap T_{y'} \not= \emptyset \Rightarrow T_ y = T_{y'}$.
Comments (0)