The Stacks project

Lemma 32.4.17. Let $S$ be a scheme. Let $X = \mathop{\mathrm{lim}}\nolimits X_ i$ be a directed limit of schemes over $S$ with affine transition morphisms. Assume

  1. $S$ quasi-separated,

  2. $X_ i$ quasi-compact and quasi-separated,

  3. $X \to S$ separated.

Then $X_ i \to S$ is separated for all $i$ large enough.

Proof. Let $0 \in I$. Note that $I$ is nonempty as the limit is directed. As $X_0$ is quasi-compact we can find finitely many affine opens $U_1, \ldots , U_ n \subset S$ such that $X_0 \to S$ maps into $U_1 \cup \ldots \cup U_ n$. Denote $h_ i : X_ i \to S$ the structure morphism. It suffices to check that for some $i \geq 0$ the morphisms $h_ i^{-1}(U_ j) \to U_ j$ are separated for $j = 1, \ldots , n$. Since $S$ is quasi-separated the morphisms $U_ j \to S$ are quasi-compact. Hence $h_ i^{-1}(U_ j)$ is quasi-compact and quasi-separated. In this way we reduce to the case $S$ affine. In this case we have to show that $X_ i$ is separated and we know that $X$ is separated. Thus the lemma follows from Lemma 32.4.14. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01ZH. Beware of the difference between the letter 'O' and the digit '0'.