The Stacks project

Lemma 29.41.6. A closed immersion is proper, hence a fortiori universally closed.

Proof. The base change of a closed immersion is a closed immersion (Schemes, Lemma 26.18.2). Hence it is universally closed. A closed immersion is separated (Schemes, Lemma 26.23.8). A closed immersion is of finite type (Lemma 29.15.5). Hence a closed immersion is proper. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 29.41: Proper morphisms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01W5. Beware of the difference between the letter 'O' and the digit '0'.