Lemma 29.13.5. The base change of a quasi-affine morphism is quasi-affine.
Proof. Let $f : X \to S$ be a quasi-affine morphism. By Lemma 29.13.3 above we can find a quasi-coherent sheaf of $\mathcal{O}_ S$-algebras $\mathcal{A}$ and a quasi-compact open immersion $X \to \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})$ over $S$. Let $g : S' \to S$ be any morphism. Denote $f' : X_{S'} = S' \times _ S X \to S'$ the base change of $f$. Since the base change of a quasi-compact open immersion is a quasi-compact open immersion we see that $X_{S'} \to \underline{\mathop{\mathrm{Spec}}}_{S'}(g^*\mathcal{A})$ is a quasi-compact open immersion (we have used Schemes, Lemmas 26.19.3 and 26.18.2 and Constructions, Lemma 27.4.6). By Lemma 29.13.3 again we conclude that $X_{S'} \to S'$ is quasi-affine. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)