Lemma 29.11.8. The base change of an affine morphism is affine.
Proof. Let $f : X \to S$ be an affine morphism. Let $S' \to S$ be any morphism. Denote $f' : X_{S'} = S' \times _ S X \to S'$ the base change of $f$. For every $s' \in S'$ there exists an open affine neighbourhood $s' \in V \subset S'$ which maps into some open affine $U \subset S$. By assumption $f^{-1}(U)$ is affine. By the material in Schemes, Section 26.17 we see that $f^{-1}(U)_ V = V \times _ U f^{-1}(U)$ is affine and equal to $(f')^{-1}(V)$. This proves that $S'$ has an open covering by affines whose inverse image under $f'$ is affine. We conclude by Lemma 29.11.3 above. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #8490 by ElĂas Guisado on
Comment #9102 by Stacks project on
There are also: