The Stacks project

Example 26.21.17. Consider the nonaffine scheme $U = \mathop{\mathrm{Spec}}(k[x, y]) \setminus \{ (x, y)\} $ of Example 26.9.3. On the other hand, consider the scheme

\[ \mathbf{GL}_{2, k} = \mathop{\mathrm{Spec}}(k[a, b, c, d, 1/ad - bc]). \]

There is a morphism $\mathbf{GL}_{2, k} \to U$ corresponding to the ring map $x \mapsto a$, $y \mapsto b$. It is easy to see that this is a surjective morphism, and hence the image is not contained in any affine open of $U$. In fact, the affine scheme $\mathbf{GL}_{2, k}$ also surjects onto $\mathbf{P}^1_ k$, and $\mathbf{P}^1_ k$ does not even have an immersion into any affine scheme.


Comments (0)

There are also:

  • 18 comment(s) on Section 26.21: Separation axioms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01KX. Beware of the difference between the letter 'O' and the digit '0'.