The Stacks project

Lemma 26.17.2. Let $f : X \to S$ and $g : Y \to S$ be morphisms of schemes with the same target. If $X, Y, S$ are all affine then $X \times _ S Y$ is affine.

Proof. Suppose that $X = \mathop{\mathrm{Spec}}(A)$, $Y = \mathop{\mathrm{Spec}}(B)$ and $S = \mathop{\mathrm{Spec}}(R)$. By Lemma 26.6.7 the affine scheme $\mathop{\mathrm{Spec}}(A \otimes _ R B)$ is the fibre product $X \times _ S Y$ in the category of locally ringed spaces. Hence it is a fortiori the fibre product in the category of schemes. $\square$


Comments (0)

There are also:

  • 8 comment(s) on Section 26.17: Fibre products of schemes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01JQ. Beware of the difference between the letter 'O' and the digit '0'.