Example 26.11.9. There exists a scheme without closed points. Namely, let $R$ be a local domain whose spectrum looks like $(0) = \mathfrak p_0 \subset \mathfrak p_1 \subset \mathfrak p_2 \subset \ldots \subset \mathfrak m$. Then the open subscheme $\mathop{\mathrm{Spec}}(R) \setminus \{ \mathfrak m\} $ does not have a closed point. To see that such a ring $R$ exists, we use that given any totally ordered group $(\Gamma , \geq )$ there exists a valuation ring $A$ with valuation group $(\Gamma , \geq )$, see [Krull]. See Algebra, Section 10.50 for notation. We take $\Gamma = \mathbf{Z}x_1 \oplus \mathbf{Z}x_2 \oplus \mathbf{Z}x_3 \oplus \ldots $ and we define $\sum _ i a_ i x_ i \geq 0$ if and only if the first nonzero $a_ i$ is $> 0$, or all $a_ i = 0$. So $x_1 \geq x_2 \geq x_3 \geq \ldots \geq 0$. The subsets $x_ i + \Gamma _{\geq 0}$ are prime ideals of $(\Gamma , \geq )$, see Algebra, notation above Lemma 10.50.17. These together with $\emptyset $ and $\Gamma _{\geq 0}$ are the only prime ideals. Hence $A$ is an example of a ring with the given structure of its spectrum, by Algebra, Lemma 10.50.17.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)