The Stacks project

Lemma 26.3.5. Let $f : X \to Y$ be a morphism of locally ringed spaces. Let $U \subset X$, and $V \subset Y$ be open subsets. Suppose that $f(U) \subset V$. There exists a unique morphism of locally ringed spaces $f|_ U : U \to V$ such that the following diagram is a commutative square of locally ringed spaces

\[ \xymatrix{ U \ar[d]_{f|_ U} \ar[r] & X \ar[d]^ f \\ V \ar[r] & Y } \]

Proof. Omitted. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 26.3: Open immersions of locally ringed spaces

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01HI. Beware of the difference between the letter 'O' and the digit '0'.