The Stacks project

If higher Čech cohomology of an abelian sheaf vanishes for all open covers, then higher cohomology vanishes.

Lemma 20.11.8. Let $X$ be a ringed space. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module such that

\[ \check{H}^ p(\mathcal{U}, \mathcal{F}) = 0 \]

for all $p > 0$ and any open covering $\mathcal{U} : U = \bigcup _{i \in I} U_ i$ of an open of $X$. Then $H^ p(U, \mathcal{F}) = 0$ for all $p > 0$ and any open $U \subset X$.

Proof. Let $\mathcal{F}$ be a sheaf satisfying the assumption of the lemma. We will indicate this by saying “$\mathcal{F}$ has vanishing higher Čech cohomology for any open covering”. Choose an embedding $\mathcal{F} \to \mathcal{I}$ into an injective $\mathcal{O}_ X$-module. By Lemma 20.11.1 $\mathcal{I}$ has vanishing higher Čech cohomology for any open covering. Let $\mathcal{Q} = \mathcal{I}/\mathcal{F}$ so that we have a short exact sequence

\[ 0 \to \mathcal{F} \to \mathcal{I} \to \mathcal{Q} \to 0. \]

By Lemma 20.11.7 and our assumptions this sequence is actually exact as a sequence of presheaves! In particular we have a long exact sequence of Čech cohomology groups for any open covering $\mathcal{U}$, see Lemma 20.10.2 for example. This implies that $\mathcal{Q}$ is also an $\mathcal{O}_ X$-module with vanishing higher Čech cohomology for all open coverings.

Next, we look at the long exact cohomology sequence

\[ \xymatrix{ 0 \ar[r] & H^0(U, \mathcal{F}) \ar[r] & H^0(U, \mathcal{I}) \ar[r] & H^0(U, \mathcal{Q}) \ar[lld] \\ & H^1(U, \mathcal{F}) \ar[r] & H^1(U, \mathcal{I}) \ar[r] & H^1(U, \mathcal{Q}) \ar[lld] \\ & \ldots & \ldots & \ldots \\ } \]

for any open $U \subset X$. Since $\mathcal{I}$ is injective we have $H^ n(U, \mathcal{I}) = 0$ for $n > 0$ (see Derived Categories, Lemma 13.20.4). By the above we see that $H^0(U, \mathcal{I}) \to H^0(U, \mathcal{Q})$ is surjective and hence $H^1(U, \mathcal{F}) = 0$. Since $\mathcal{F}$ was an arbitrary $\mathcal{O}_ X$-module with vanishing higher Čech cohomology we conclude that also $H^1(U, \mathcal{Q}) = 0$ since $\mathcal{Q}$ is another of these sheaves (see above). By the long exact sequence this in turn implies that $H^2(U, \mathcal{F}) = 0$. And so on and so forth. $\square$


Comments (1)

Comment #1108 by Evan Warner on

Suggested slogan: If higher Cech cohomology of a ringed space vanishes for all open covers, then higher cohomology vanishes.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01EV. Beware of the difference between the letter 'O' and the digit '0'.